LABORATORY INVESTIGATION

Transarterial Embolization of Liver Cancer in a Transgenic Pig Model

Fuad Nurili, MD, Sebastien Monette, DVM, MVSc, Adam O. Michel, MVSc, DVM, DrMedVet, Achiude Bendet, MD, Olca Basturk, MD, Gokce Askan, MD, Christopher Cheleuitte-Nieves, PhD, DVM, Hooman Yarmohammadi, MD, Aaron W.P. Maxwell, MD, Etyaz Ziv, MD, PhD, Kyle M. Schachtshneider, PhD, Ron C. Gaba, MD, MS, Lawrence B. Schook, PhD, Stephen B. Solomon, MD, and F. Edward Boas, MD, PhD

ABSTRACT

Purpose: To develop and characterize a porcine model of liver cancer that could be used to test new locoregional therapies.

Materials and Methods: Liver tumors were induced in 18 Oncopigs (transgenic pigs with Cre-inducible TP53R167H and KRASG12D mutations) by using an adenoviral vector encoding the Cre-recombinase gene. The resulting 60 tumors were characterized on multiphase contrast-enhanced CT, angiography, perfusion, micro-CT, and necropsy. Transarterial embolization was performed using 40–120 μm (4 pigs) or 100–300 μm (4 pigs) Embosphere microspheres. Response to embolization was evaluated on imaging. Complications were determined based on daily clinical evaluation, laboratory results, imaging, and necropsy.

Results: Liver tumors developed at 60/70 (86%) inoculated sites. Mean tumor size was 2.1 cm (range, 0.3–4 cm) at 1 week. Microscopically, all animals developed poorly differentiated to undifferentiated carcinomas accompanied by a major inflammatory component, which resembled undifferentiated carcinomas of the human pancreatobiliary tract. Cytokeratin and vimentin expression confirmed epithelioid and mesenchymal differentiation, respectively. Lymph node, lung, and peritoneal metastases were seen in some cases. On multiphase CT, all tumors had a hypovascular center, and 17/60 (28%) had a hypervascular rim. After transarterial embolization, noncontrast CT showed retained contrast medium in the tumors. Follow-up contrast-enhanced scan showed reduced size of tumors after embolization using either 40–120 μm or 100–300 μm Embosphere microspheres, while untreated tumors showed continued growth.

Conclusions: Liver tumors can be induced in a transgenic pig and can be successfully treated using bland embolization.
Current intra-arterial therapies for liver cancer or liver metastases—embolization, chemoembolization, and radioembolization—have several limitations, including a high rate of recurrence, damage to normal liver, and inability to treat extrahepatic disease. A wide range of new therapies have been proposed to address these limitations, including new embolic agents (1,2), devices for local drug delivery (3–5), intra-arterial drugs (6–10), intra-arterial virus (11), and intravascular ablation modalities (12–15).

Realistic animal models are critical to develop and optimize innovative locoregional therapies for liver cancer. Existing animal models do not always accurately reflect outcomes in humans. Hepatocellular carcinoma (HCC) can be induced in rats and mice (16,17). However, lobar embolization in rats (17) results in liver and lung necrosis and a mortality rate of 56%. New cancer therapies developed in rodents have a high failure rate when translated to humans (18). The rabbit VX2 model is currently the most commonly used model for testing intra-arterial therapies in the liver. However, rabbits generally have different physiology (19,20) and usually require higher weight-based drug dosing (21,22) than humans.

This article presents a new pig model of liver cancer using the Oncopig (23,24), a transgenic pig with Cre-recombinase inducible TP53R167H and KRASG12D mutations. In contrast to rodents and rabbits, pigs have similar size, physiology (19,20), drug dosing (21,22), and immune response (25,26) to humans. Locoregional therapy in pigs can be performed using the same size catheters and devices that are used in humans. This porcine model could enable rapid testing and iteration of new devices, drugs, and techniques that are not yet ready for human trials.

MATERIALS AND METHODS

Animals

The Institutional Animal Care and Use Committee approved all research procedures. The animal facility has AAALAC accreditation and operates in compliance with the Guide for the Care and Use of Laboratory Animals (27). Eighteen female Oncopigs (transgenic pigs with Cre-inducible TP53R167H and KRASG12D mutations) were obtained from the University of Illinois or the National Swine Resource and Research Center at the University of Missouri. All procedures and imaging were performed under general anesthesia with perioperative analgesia. Tumor induction was performed when the pigs were 8–22 weeks old. The overall study design is shown in Figure E1 (available online on the article’s Supplemental Material page at www.jvir.org).

Tumor Induction (In Situ Method)

An 18-gauge core biopsy specimen of the liver was obtained under computed tomography (CT) or ultrasound guidance (1- or 2-cm core length; Temno Evolution; Merit Medical Systems, South Jordan, Utah) using coaxial technique (18 pigs). TP53R167H and KRASG12D expression was induced by incubating the core biopsy specimen with an adenoviral vector carrying the Cre recombinase gene (10⁹ pfu Ad5CMVCre-eGFP; University of Iowa Viral Vector Core, Iowa City, Iowa) for 20 minutes at room temperature in phosphate-buffered saline containing 15-mM calcium chloride (total fluid volume of 1 mL). Gelatin sponge (Surgifoam; Ethicon, Somerville, New Jersey) was then added using a 3-way stopcock, and the mixture (virus, core biopsy specimen, gelatin) was injected percutaneously back into the pig’s liver through the biopsy needle, which was kept in place. At least 2 sites were inoculated in each liver. Inoculation sites were selected to be as far apart as possible, easy and safe to access, and deep enough to avoid leakage of injected material into the peritoneum.

Tumor Induction (Cell Line Method)

Autologous hepatocyte-derived cell lines were created in 8 pigs, as previously described (28,29). Briefly, liver resection was performed, and hepatocytes were purified. The hepatocytes were transformed using Ad5CMVCre-eGFP and then passaged in cell culture. Transformed cells (6 × 10⁷) were mixed with gelatin sponge and injected percutaneously into the pig’s liver under CT or ultrasound guidance. At least 2 sites were inoculated in each liver.

Multiphase Contrast-Enhanced CT

Five-phase contrast-enhanced CT was performed 1 and 2 weeks after tumor inoculation to monitor tumor growth and response to therapy (18 pigs; as described below, a subset of pigs was treated using transarterial embolization immediately after the 1-week scan). Noncontrast CT of the abdomen and pelvis was performed. Omnipaque 300 (2 mL/kg, maximum 150 mL; GE Healthcare, Chicago, Illinois) was power injected at 2–3 mL/s. The early arterial phase CT scan was obtained when the abdominal aorta reached 150 Hounsfield units. The late arterial phase was obtained 15 seconds after the early arterial phase. The portal venous phase was obtained 25 seconds after the late arterial phase scan. The delayed phase scan was obtained 90 seconds after the portal venous phase. All scans were obtained at 120 kVp.

ABBREVIATION

HCC = hepatocellular carcinoma
Liver Tumor Perfusion
Hepatic artery and portal vein perfusion of the largest liver tumor in each pig (18 pigs) was estimated based on quantitative measurements from multiphase CT, as previously described (30).

Angiography, Cone-Beam CT, and Micro-CT
From femoral access, under fluoroscopic guidance, a 4-F catheter was advanced into the celiac artery, and an arteriogram was obtained. The 4-F catheter or a 2.4-F microcatheter was advanced into the hepatic artery, and an arteriogram was obtained. Cone-beam CT arteriography was performed during a breath hold after administering a paralytic agent (rocuronium 1–1.6 mg/kg intravenously). To obtain high-resolution micro-CT of tumor arteries, yellow silicone contrast medium (MICROFIL; Flow Tech, Inc, Carver, Massachusetts) was injected into the hepatic artery 2 weeks after tumor inoculation in a single pig with untreated liver tumors. The liver tumor was resected, and ex vivo micro-CT was performed at 85-μm resolution using a microCAT II micro-CT scanner (Imtek Corp, Oak Ridge, Tennessee).

Transarterial Embolization
One week after tumor inoculation, selective transarterial embolization of 1 liver tumor per pig was performed to stasis, using 40–120 μm (4 pigs) or 100–300 μm (4 pigs) Embosphere microspheres (Merit Medical Systems). Follow-up CT scan and necropsy were performed 1 week after embolization.

Safety Evaluation
Complications were determined based on daily clinical evaluation after treatment, CT scan, laboratory results (liver function tests, basic metabolic panel, complete blood count) before treatment and before necropsy, and necropsy.

Pathology
Two weeks after tumor inoculation, the final CT scan was obtained, the animals were euthanized, and the liver tumors were macroscopically examined, harvested, and fixed in 10% neutral buffered formalin (18 pigs). Complete necropsies were performed in 2 pigs. Following formalin fixation, sections of tumor were processed into paraffin blocks and sectioned at 5-μm thickness. Hematoxylin and eosin–stained sections were reviewed by both human (O.B., G.A.) and veterinary (A.O.M., S.M.) pathologists. Representative formalin-fixed paraffin-embedded tissue sections were immunolabeled with antibodies against cytokeratin AE1/AE3, vimentin, Iba1, arginase, and CD31 (Table E1 [available online on the article’s Supplemental Material page at www.jvir.org]).

Statistical Analysis
Tumor sizes were compared using 2-tailed t tests. Proportions were compared using Fisher exact test or χ² test. Statistical analysis was performed in Excel 2016 (Microsoft Corp, Redmond, Washington) and Mathematica 12 (Wolfram, Champaign, Illinois). P values < .05 were considered significant.

RESULTS
Imaging
Liver tumors developed at 60 of 70 sites (86%) that were inoculated. Mean tumor size was 2.1 cm (range, 0.3–4 cm) at 1 week. There was no significant difference in inoculation success rate (P = .06) or tumor size (P = .47) for sites inoculated using the in situ method (n = 48) or the cell line method (n = 22). There was a trend toward lower inoculation success rate with the cell line method (73%) compared with the in situ method (92%).

On multiphase contrast-enhanced CT, all tumors had a hypovascular center (Fig 1a–e), and 17 of 60 (28%) had a hypervascular rim (Fig E2a [available online on the article’s Supplemental Material page at www.jvir.org]). Two tumors invaded the hepatic vein, and 1 tumor invaded the portal vein (Fig E2b [available online on the article’s Supplemental Material page at www.jvir.org]).

Perfusion
Hepatic artery and portal vein perfusion to Oncopig liver tumors (Fig E3 [available online on the article’s Supplemental Material page at www.jvir.org]) overlaps with previously collected perfusion data on human HCC (30) and colorectal cancer liver metastases (31); 35% of human HCCs and 83% of human colorectal liver metastases fall within the range of hepatic artery and portal vein coefficients seen in Oncopig liver tumors.

Micro-CT
Micro-CT of untreated Oncopig liver tumors (Fig 2) shows that the tumors recruit blood supply from the hepatic artery and develop new tumor vascularity. The scan resolution is 85 μm, which is smaller than many embolic particles.

Pathology
Grossly, the tumors were solid, pale tan lesions involving the liver. Histopathology revealed poorly differentiated to undifferentiated carcinomas, accompanied by a major inflammatory component, in all 18 pigs (Fig 3a–f). Hematoxylin and eosin–stained sections (46 tumors) showed 4 different tumor morphologies: (a) numerous atypical epithelioid cells organized in hypercellular anastomosing islands (15 of 46 tumors); (b) small number of atypical epithelioid cells present as individual cells or very small clusters (21 of 46 tumors); (c) numerous spindle cells organized in hypercellular bundles with a smaller epithelioid
cell component (7 of 46 tumors); (d) inflammation only, without atypical cells (3 of 46 tumors). There was no association between the tumor induction technique (in situ or cell line) and tumor morphology ($P = .44$).

All tumors had a strong inflammatory response that was composed of lymphocytic and plasmacytic inflammatory infiltrates, often surrounding neoplastic cells and infiltrating portal regions of the liver. In contrast, necrotic portions of the tumor were surrounded by histiocytes and neutrophils. Multinucleated giant cells were often noted in the tumors.

Immunohistochemistry revealed that neoplastic cells with an atypical epithelioid morphology had 2 distinct immunophenotypes. They were either cytokeratin AE1/AE3 and vimentin immunopositive (Fig 3c, d) or AE1/AE3 immunonegative and vimentin immunopositive. The spindle cells were AE1/AE3 immunonegative and vimentin immunopositive (Fig E4 [available online on the article’s Supplemental Material page at www.jvir.org]). Cytokeratin expression indicates epithelial differentiation, and vimentin expression indicates mesenchymal differentiation. Loss of cytokeratin expression, with maintenance of malignant cytologic features, suggests epithelial-to-mesenchymal transition. Tumor cells were immunonegative for Iba1, arginase, and CD31.

Metastases to lymph nodes, peritoneum, and lung were seen in some cases (Fig 3e, f). Two pigs had a complete necropsy, and an additional 3 pigs had incidentally noted extrahepatic tumors that were submitted to pathology. Histologically confirmed metastases were seen in the peritoneum (5 of 5 pigs), lymph nodes (2 of 5 pigs), lung (1 of 5 pigs), and pleura (1 of 5 pigs). It is important to note that this study was not designed to evaluate metastases, and most pigs did not have a complete necropsy, so the actual incidence of metastases is unknown. In addition, it is unknown whether these are true metastases. The peritoneal tumors could be due to leakage into the peritoneum during liver inoculation, and the lung tumor could be due to inoculation into the hepatic vein.

Overall features were similar to those of poorly differentiated to undifferentiated carcinomas, with or without multinucleated giant cells, of the human pancreatobiliary tract (32,33).

Embolization

After transarterial embolization, noncontrast CT showed retained contrast medium in the tumors (Fig 4a, b). Follow-up contrast-enhanced CT scan showed decreased size and enhancement of tumors after embolization (Fig 4c). Untreated tumors grew by 0.3 cm between 1 and 2 weeks after inoculation (Fig 5). In the same time interval, tumors shrank by 0.2 cm after embolization using 40–120 μm Embosphere microspheres ($P = .03$), and they shrank by 0.3 cm after embolization using 100–300 μm Embosphere microspheres ($P = .07$).
Complications
The complication rate was 25% (2 of 8 pigs). One pig treated with 40–120 μm Embosphere microspheres developed post-embolization syndrome (vomiting) requiring euthanasia. One pig treated with 100–300 μm Embosphere microspheres died during sedation for final imaging and was found to have a large right pleural effusion, liver infarct, and progressive extrahepatic metastases (peritoneum, lung). Histopathology showed Embosphere microspheres in both the hepatic artery and the portal vein, which could explain the liver infarct.

DISCUSSION
This study presents a promising new pig liver tumor model, with fast and reproducible site-specific tumor induction. The liver tumors are hypovascular, with a hypervascular rim, macrovascular invasion, and metastases in some cases. Histopathology showed poorly differentiated to undifferentiated carcinomas with a major inflammatory component. Oncopig liver tumor blood supply is similar to human liver tumors, and the tumors respond to transarterial embolization. The tumors can invade the portal vein or hepatic vein, similar to HCC. Comparison with other animal models is summarized in Table E2 (available online on the article’s Supplemental Material page at www.jvir.org) (16–22,25,26,34,35).

Oncopig liver tumor vascularity was characterized on both perfusion CT and micro-CT. Perfusion parameters in

Figure 2. Micro-CT of a liver tumor in the Oncopig after intraarterial injection of radiopaque silicone (maximum intensity projection image, 10-mm-thick slab, with tumor vessels colored red). The image shows a 0.3-mm tumor feeding artery (white arrow) (3 other feeding vessels not shown), branching intratumoral arteries (black arrows), disorganized intratumoral vessels (white arrowheads), and tiny vascular lakes (black arrowheads). The intratumoral vessels measure up to 0.5 mm, and the vascular lakes measure up to 1 mm. Scan resolution is 85 μm, and a 1-cm bar and 200-μm circle are shown for scale.

Figure 3. Pathology of Oncopig tumors. (a) Gross pathology shows a pale tan, well-circumscribed soft tissue nodule (arrow) in the liver (scale bar = 1 cm). (b) Hematoxylin and eosin–stained section shows that the tumor is composed of solid islands of atypical cells with eosinophilic cytoplasm and large nuclei (scale bar = 50 μm). (c) Cytokeratin AE1/AE3 expression (brown) in atypical cells confirms epithelioid differentiation (scale bar = 50 μm). (d) Vimentin immunopositivity (brown) confirms mesenchymal differentiation (scale bar = 50 μm). (e) Lung metastasis (scale bar = 200 μm). (f) Lymph node metastasis (scale bar = 100 μm). Additional immunohistochemistry is shown in Figure E4.
human liver tumors predict response to radioembolization of colorectal liver metastases (31) and survival after embolization of HCC (30). This study shows that Oncopig liver tumors have hepatic artery and portal vein perfusion characteristics that overlap with both human colorectal liver metastases and HCC.

Micro-CT of Oncopig liver tumors shows how the tumors recruit blood supply and develop tumor neovascularity. The tumors contain vascular lakes, which are also seen in human HCC (36), where they predict response to chemoembolization. Characterization of microscopic tumor vasculature down to the arteriole level (at the size of embolization particles) could provide insights into tumor angiogenesis and outcomes after therapy. Necropsy and micro-CT can provide detailed feedback on the causes of treatment failure and complications, which are not easily obtained in humans. For example, in an Oncopig with liver infarcts after embolization, necropsy showed embolic particles in both the hepatic artery and the portal vein, suggesting an angiographically occult arterioportal fistula as the cause of the infarct.

A major inflammatory component was seen in all of the Oncopig liver tumors. Undifferentiated carcinomas in humans can also contain an inflammatory infiltrate (32,33). Subcutaneous and intramuscular tumors in the Oncopig also contain a major inflammatory component, which is due to an antitumor T-cell response (37). Future experiments should address whether these inflammatory pig tumors could serve as a good model for the antitumor immune response in humans.

The cells of origin of these neoplasms could not be determined. Expression of cytokeratins and vimentin indicates epithelial and mesenchymal differentiation, respectively, and coexpression of these markers, in association with tumor morphology observed on hematoxylin and eosin-stained sections, is most consistent with a primary undifferentiated carcinoma undergoing epithelial-to-mesenchymal transition. Alternatively, the heterogeneous appearance of the tumors could be due to transformation of > 1 cell type. Major epithelial populations of the liver that can give rise to carcinomas are hepatocytes and biliary epithelial cells. Arginase, a hepatocyte marker, was not expressed by tumor cells, but this lack of expression does not rule out a hepatocellular origin, as expression can be lost in undifferentiated tumors. There was no difference in histologic appearance of tumors generated using the cell line technique (which involved transforming purified hepatocytes) and the in situ technique (which involved transforming a core biopsy specimen of the liver, which contains both epithelial and mesenchymal cell types).

The Oncopig model has previously been used to generate subcutaneous and intramuscular tumors (28,38), but not liver tumors. Other pig liver tumor models are available (39), but they require > 1 year for tumor development, which makes it difficult to rapidly test and iterate new

Figure 4. Transarterial embolization. (a) Contrast-enhanced CT shows an Oncopig liver tumor before treatment. (b) After transarterial embolization of the liver tumor using 40–120 μm Embosphere microspheres, noncontrast CT obtained immediately after the procedure shows retained contrast medium in the tumor. (c) Follow-up contrast-enhanced scan obtained 1 week later shows decreased size and enhancement of the liver tumor.

Figure 5. Change in liver tumor size 1 week after transarterial embolization compared with untreated tumors. After embolization using 40–120 μm Embosphere microspheres, tumor size decreased ($P = .03$) compared with untreated tumors. Other pairwise comparisons were not statistically significant. Error bars show standard error of the mean.
therapies. The simplified single-step tumor inoculation method reported here (in situ method) is technically simpler to implement than the cell line method, which requires liver resection and cell culture, and the rabbit VX2 model, which requires growing tumors subcutaneously before transferring them to the liver. The in situ tumor inoculation method can be performed by any interventional radiologist with access to an animal laboratory.

The Oncopig liver tumor model can be used to develop new image-guided therapies, such as tumor-targeting intra-arterial drug carriers (40), and intra-arterial local immunotherapy (41). One limitation of the Oncopig model is that it is more expensive than small animal models (but possibly easier to translate to human trials). Another limitation is that the inflammatory, poorly differentiated, rapidly growing tumors might not be a good model for well-differentiated or slowly growing tumors. However, the similarity in perfusion to human liver tumors and the response to bland embolization suggest that it will be a good model for arterially directed therapies and local drug delivery. The robust antitumor immune response could be helpful for developing new immunotherapy techniques.

In conclusion, liver tumors can be induced in a transgenic pig and can be successfully treated using bland embolization. The Oncopig liver tumor model is a potential alternative to the rabbit VX2 model, especially in cases where animal size or physiology are important.

ACKNOWLEDGMENTS

This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Cancer Research Program under Award No. W81XWH-16-1-0338. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.

Some pigs were supplied by the National Swine Resource and Research Center, which was supported by National Institutes of Health Grant U42 OD011140. Our animal facility was supported in part by GE Healthcare, and core facilities were funded in part through an National Institutes of Health/National Cancer Institute Cancer Center Support Grant (P30 CA008748).

Govind Srimathiverravalli provided valuable advice. Megin Reilly, Lee-Ronn Paluch, Jacqueline Candelier, Brian Hanna, Stephanie Harris-Ash, Alvin Lopez, and Brian Cuevas helped with animal experiments. Liqun Cai helped with cell culture experiments. Afsar Barlas, Maria Jiao, and Mesruh Turkekul performed immunohistochemistry. Regina Schwind helped coordinate experiments.

REFERENCES

Figure E1. Study design. CBC = complete blood count.

Figure E2. Contrast-enhanced CT shows that some Oncopig liver tumors (arrows) have hypervascular rims (a) or invade the portal vein (b).
Figure E3. Hepatic artery and portal vein perfusion of Oncopig liver tumors compared with previously published perfusion measurements on human hepatocellular carcinoma (HCC) (30) and human colorectal liver metastases (CLM) (31). The hepatic artery coefficient is an estimate of the hepatic artery blood supply to a liver tumor, and the portal vein coefficient is an estimate of the portal vein blood supply to the tumor. Each point represents a single tumor. The ellipses show the average ± SD for each group.

<table>
<thead>
<tr>
<th>Tumor morphology</th>
<th>H&E stain</th>
<th>Cytokeratin AE1/AE3</th>
<th>Vimentin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelioid cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>predominant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spindle cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>predominant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure E4. Immunohistochemistry of Oncopig liver tumors shows that atypical epithelioid cells were immunopositive (brown) for both cytokeratin AE1/AE3 and vimentin. Spindle cells were immunopositive (brown) for vimentin, but immunonegative for cytokeratin AE1/AE3. Scale bars = 50 μm. H&E = hematoxylin and eosin.
Table E1. Immunohistochemistry Technique

<table>
<thead>
<tr>
<th>Marker</th>
<th>Staining Platform</th>
<th>Epitope Retrieval</th>
<th>Primary Antibody</th>
<th>Primary Antibody Concentration</th>
<th>Secondary Antibody and Detection System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokeratin AE1/AE3</td>
<td>Ventana XT*</td>
<td>Tris EDTA–based CC1 retrieval†, pH 8</td>
<td>760-2135 ‡</td>
<td>Prediluted, 1:5</td>
<td>MKB-2225*, Ventana DAB Map*</td>
</tr>
<tr>
<td>Vimentin</td>
<td>BOND RX§</td>
<td>Heat-induced, pH 9.0</td>
<td>5741†</td>
<td>1:250</td>
<td>DS9800§</td>
</tr>
<tr>
<td>Iba1</td>
<td>BOND RX§</td>
<td>Heat-induced, pH 9.0</td>
<td>ab5076§</td>
<td>1:500</td>
<td>BA-5000, DS9800§</td>
</tr>
<tr>
<td>Arginase</td>
<td>Manual</td>
<td>Heat-induced, pH 6.0</td>
<td>ab91279†</td>
<td>1:1,000</td>
<td>BA-1000, PK-6100§</td>
</tr>
<tr>
<td>CD31</td>
<td>Manual</td>
<td>Tri EDTA</td>
<td>ab28364†</td>
<td>1:100</td>
<td>BA-1000</td>
</tr>
</tbody>
</table>

*Roche Diagnostics Corp, Indianapolis, Indiana.
†Ventana Medical Systems, Oro Valley, Arizona.
‡Vector Laboratories, Inc, Burlingame, California.
§Leica Biosystems, Inc, Buffalo Grove, Illinois.
kCell Signaling Technology, Danvers, Massachusetts.
¶Abcam, Cambridge, Massachusetts.

Table E2. Animal Models of Primary or Secondary Liver Cancer

<table>
<thead>
<tr>
<th></th>
<th>Oncopig</th>
<th>Rabbit VX2</th>
<th>Rat/Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology</td>
<td>Carcinoma, with inflammatory infiltrate</td>
<td>Squamous cell carcinoma, with necrosis before treatment</td>
<td>HCC (16,17)</td>
</tr>
<tr>
<td>Site-specific tumor induction</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Devices/catheters</td>
<td>Same as humans</td>
<td>Requires smaller devices/ catheters</td>
<td>Requires smaller devices/ catheters</td>
</tr>
<tr>
<td>Blood supply to liver</td>
<td>Mostly portal vein (similar to humans)</td>
<td>Mostly portal vein (similar to humans)</td>
<td>More dependent on hepatic artery flow; hepatic artery is same size as portal vein; high rate of death after lobar TAE (17)</td>
</tr>
<tr>
<td>Drug dosing</td>
<td>Similar to human weight-based dosing (21,22)</td>
<td>Usually higher mg/kg dosing than humans; different pharmacokinetics</td>
<td>Usually higher mg/kg dosing than humans; different pharmacokinetics</td>
</tr>
<tr>
<td>Metabolic rate or oxygen use (per kg)</td>
<td>Similar to humans</td>
<td>Higher for smaller animals</td>
<td>Higher for smaller animals (19,20)</td>
</tr>
<tr>
<td>Immune response</td>
<td>Strong antitumor immune response; pig immunome is similar to humans (25,26,34)</td>
<td>Unknown</td>
<td>Immune response differs from humans (35)</td>
</tr>
<tr>
<td>Translatability</td>
<td>Unknown</td>
<td>Unknown</td>
<td>High failure rate when therapies are translated to humans (18)</td>
</tr>
</tbody>
</table>

HCC = hepatocellular carcinoma; TAE = transarterial embolization.